3 and 4 .Determinants and Matrices
normal

જો $A = \left[ {\begin{array}{*{20}{c}}
3&7\\
1&2
\end{array}} \right]$ તો $|A^{2011} -5A^{2010}|$ મેળવો.

A

$1$

B

$-1$

C

$6$

D

$-6$

Solution

$\left|\mathrm{A}^{2011}-5 \mathrm{A}^{2010}\right|=|\mathrm{A}|^{2010}|\mathrm{A}-5 \mathrm{I}|$

$A-5 I=\left(\begin{array}{ll}{3} & {7} \\ {1} & {2}\end{array}\right)-\left(\begin{array}{ll}{5} & {0} \\ {0} & {5}\end{array}\right)=\left(\begin{array}{cc}{-2} & {7} \\ {1} & {-3}\end{array}\right)$

$|A-5 I|=-1$ and $|A|=-1$

So $|\mathrm{A}|^{2010}|\mathrm{A}-5 \mathrm{I}|=(-1)^{2010}(-1)=-1$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.